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ABSTRACT  

Catholic University of America, 620 Michigan Ave. NE, Washington, DC 20064 

We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. 
Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths 
by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm 
diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually 
fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the 
hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with 
permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components 
underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate 
the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is 
directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available. 
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1. INTRODUCTION  
The next generation of large-scale science experiments studying the universe will require large format detector arrays 
containing tens of thousands of pixels1. These studies will likely include CMB polarization, general evolution of large-
scale structure in the universe and other astrophysical phenomena, requiring large focal planes as well as background-
limited detector arrays. Currently, there is no existing detector for wavelengths longer than 40µm that can meet these 
science goals. Recognizing this fact and in preparation for the New Worlds, New Horizons (NWNH) decadal survey in 
astronomy and astrophysics by the National Research Council, a large community of scientists submitted a white paper 
with clear recommendations, including the need for novel detector array technologies with an order of magnitude or 
more increase in the format available today2

1.1 Current Detector Architecture 

. 

Our current detector architecture has evolved into what is known as the backshort-under-grid (BUG). The BUG 
architecture is currently in use with the very successful Goddard IRAM Superconducting 2-Millimeter Observer or 
GISMO instrument3,4 as well as having a scaled up version in development for the Primordial Inflation Polarization 
Explorer or PIPER mission5

 

. Both GISMO and PIPER utilize background limited transition edge sensors (TES) as 
bolometers. They also both employ the BUG, which is a reflective backshort, a separately fabricated part that fits in a 
cavity behind a membrane that both defines a pixel and contains the TES. GISMO is an array of 8 x 16 pixels on a 2mm 
pitch with 50 mm walls separating each pixel. This geometry easily accommodates 2-dimensional wiring that fans out to 
the edge of the chip for wire bonding. PIPER on the other hand, shown in Figure 1, contains 32 x 40 pixels and has a 
roughly 1mm pitch with similar wall geometry. The pixel density of this array requires 3-dimensional wiring that 
terminates on a readout substrate after passing through indium bumps for chip-to-chip electrical connectivity. 
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A requirement for TES based detectors to work is that all wiring, including the indium cold-weld, needs to be 
superconducting having reasonable critical current for the application. For instance, PIPER has a requirement on the 
order of 100µA. While both GISMO and PIPER require SQUID style multiplexing (MUX) for pixel readout, which are 
supplied by NIST, the PIPER array is required to be hybridized to the MUX, while GISMO can be wire-bonded to 
small-scale linear MUX arrays. The evolution of this architecture is prime for scaling up to even larger format detectors. 

 
Figure 1. Shown is the PIPER detector package for testing. Here the 32 x 40 array is hybridized to a simple readout 
substrate that fans out for wire-bonding to linear MUX’s. 

To meet the goals stated earlier, that is to develop detector focal planes with many thousands of pixels, a scheme is 
required that scales up the detector while still being able to read them. The basic scheme would involve straight scaling 
of both detector and MUX, which would lead to significant increases in cost and development time. However, scaling up 
the detector array and mosaic tiling the existing MUX architecture, while technically difficult, could yield a more elegant 
and cost effective approach. Here we demonstrate a technology required to produce space-worthy, far-infrared to sub-
millimeter, highly sensitivity bolometer arrays on a scale never before demonstrated. This work establishes the ability to 
increase detector array formats by an order of magnitude beyond what is currently available6

2. METHODS 

 through the use of a novel 
mosaic hybridization process. 

We utilize standard micro-fabrication techniques to produce a model detector array and the readout quadrant chips. The 
circuits produced on these chips were designed to test all interfaces between the indium, the readout substrate and the 
detector array. The basic circuit starts on the substrate with the under-bump-metal (UBM), continues to the indium bump 
and subsequently on to the landing-pad-metal (LPM) on what is the bottom of the detector array. At this point the circuit 
is shorted by the LPM back to another set of indium bumps for the return path via the UBM. 

2.1 Fabrication 

The detector array is made from a 100mm diameter single crystal silicon wafer. The part of the circuit on the detector is 
comprised of a single layer of d.c. sputtered molybdenum nitride (Mo2N) and is patterned on the bottom side of the 
wafer such that it simply acts to short out the circuit from the substrate. This layer is also patterned to receive the indium 
bumps from the substrate, including the electrically active bumps and those that are purely for mechanical strength and 
thermal conduction. This material was chosen as the landing-pad-metal primarily because it is a superconductor with a 
relatively high transition temperature, about 7 Kelvin. Also, molybdenum nitride has a stable surface morphology and is 
a well-known diffusion barrier7. To define the detector geometry we use deep reactive ion etching (DRIE) to transfer a 
pattern completely through the wafer. This pattern defines the outer frame of the detector as well as each “pixel.” A pixel 
in this sense is a cavity on a pitch of approximately 1 mm, having walls 60 µm wide between pixels. The detector model 
is an array of 32 x 40 of these pixels with the perimeter frame ranging from slightly more than half a millimeter to 
slightly more than one millimeter wide. The patterned molybdenum nitride resides on the walls between each pixel as 
well as all along the frame of the detector model. 



 
 

 
 

A full set of readout quadrant chips are fabricated on a single 100 mm diameter single crystal silicon wafer. Prior to any 
metallization, an insulating layer of 2000Å of SiO2 is grown on the wafers. The circuit traces that run from edge bond 
pads to pixel locations are the same type of molybdenum nitride used on the detector, and for similar reasons. This single 
layer also acts as the under-bump-metal. On top of the UBM and patterned to match up with the LPM, 10 µm of indium 
is deposited in a lift-off process. There is a “forest” of indium bumps that run around the perimeter of the detector 
footprint whose primary role is mechanical strength and thermal conduction. This forest however prevents a wiring fan-
out to all pixels. Consequently only 64 pixels of 1280 are capable of being readout with this model. The completed 
substrate is then diced and prepared for hybridization. 

2.2 Plasma Cleaning 

Standard metallization processes often employ in situ cleaning steps under vacuum conditions that enhance the adhesion 
or electrical contact between metallic layers. We employ this technique when depositing the indium on top of the 
molybdenum nitride on the substrate (i.e., the UBM). However, when the substrate is hybridized to the detector, the 
indium on the substrate essentially cold-welds to the molybdenum nitride on the detector. This process is done in a 
cleanroom, in air, and it is not possible to do any further processing of the parts while they are on the tool that bonds 
them together. 

When exposed to air at room temperature, indium will readily oxidize, forming a thin “crust” of In2O3. This layer of 
indium oxide can result in two problems, the first being poor adhesion to the LPM. The forces from bonding can rupture 
a surface film, thereby allowing indium to contact the LPM resulting in good adhesion, however In2O3 tends to resist 
rupturing. The second problem is that In2O3 can prevent a barrier to electrical conduction and inhibit a superconducting 
joint. In fact In2O3 has been shown to exhibit a superconductor-insulator-transition effect8

To overcome these limitations we plasma clean each chip just prior to hybridization using a March CS-1701 plasma 
cleaning system. For the substrates, we apply r.f. power to a nitrogen-rich, reducing gas mixture. The plasma has the 
effect to reduce the indium-oxide, which is then replaced by indium-nitride in a self-limiting process. The indium nitride 
ruptures more readily than the In

, although being such a thin 
surface film, will present a very low critical current. 

2O3

To develop our plasma clean on the indium we used ellipsometry to track the surface film on the indium. We did not 
calculate thickness directly, but merely tracked the Delta for each measurement. Delta is a simple calculation based on 
the polarization angles specific to a film and its substrate. It is used to make a measurement of thickness or index of 
refraction in conjunction with other measurements. As it is directly proportional to thickness, it is a good indicator by 
itself of the film and when measuring native oxide on indium, the lower the value of Delta, the thicker the In

 and enables a good electrical joint between the indium and the LPM. If the indium 
surface is merely reduced, an oxide will re-grow as soon as the chip is removed from vacuum. The indium nitride layer 
inhibits this growth allowing for time to complete the hybridization process. 

2O3 film. In 
Figure 2 we look at a sample of untreated indium alongside a sample of indium that has received the plasma treatment, 
and track them both over a long period of time. You can see that the untreated sample has a Delta value that is about 
128, which corresponds to the native In2O3, and stays at this value over time. The plasma treated sample, however, has a 
large increase in Delta just after plasma treatment indicating that we have removed the native oxide. Initially, the Delta 
of this sample drops a little due to removing the sample from the vacuum chamber, as oxygen will attach to indium 
nitride9

To prepare the other side of the cold weld joint, that is the molybdenum nitride that makes up the LPM on the detector 
array, we use a different plasma clean. This process is intended to physically remove a few layers in preparation for 
bonding. To clean the surface of the molybdenum nitride we use the same reactive ion etch system operating at moderate 
power with a gas mixture designed for sputtering. After plasma cleaning, all parts are stored in a nitrogen purged dry-
box until ready for bonding. The bonding tool itself is purged with nitrogen during the hybridization process. 

, however it plateaus over a long period of time well above the control sample due to the passivating effect of the 
indium nitride. 



 
 

 
 

 
Figure 2. This plot tracks the values of Delta taken from ellipsometry measurements from a control sample (squares), and a 
plasma cleaned sample (circles). The low Delta value of the control indicates the presence of native oxide. The plasma-
cleaned sample has a large increase in Delta, which dips upon venting, but plateaus higher than the control due to the 
passivating effect of the indium-nitride. 

2.3 Hybridization 

A flip-chip bonder from Smart Equipment Technology, formerly SUSS, was used to perform the hybridization between 
the substrate and the detector array. This tool allows for alignment between the two parts to within +- 2 µm. The 
combined substrates contain over 200,000 indium bumps, in which over 95% are for mechanical attachment between the 
substrate and the detector as well as thermal conduction, which is poor once the indium is superconducting. We utilize a 
thermocompression cycle that applies 0.4 gram-force per bump to the parts. The compression of the indium bumps, as 
seen in Figure 3, is typically slightly more than 50%. A laser leveling routine is employed to ensure a high level of 
parallelism between the chips just prior to bonding. We can achieve +- 1 µm of parallelism across a full array. After 
bonding we anneal the hybrid in a vacuum oven at 120°C for 18 hours. This creates an alloying effect between the 
indium and molybdenum nitride, which enhances the cold weld joint both mechanically and electrically. Hybrid parts 
that have been pull-tested indicate our hybrid process can exceed 100 pounds of force10. 

 
Figure 3. Scanning Electron Microscopy image post hybridization. The view shows a close-up of one corner of a pixel. 
Visible in the image are the detector wall, substrate with under-bump-metal (UBM) and the indium itself after 
approximately 50% deformation. Not visible due to the angle, is the landing-pad-metal (LPM). 

 



 
 

 
 

The hybridization plan for a single completed part is an involved process. Overall, five alignments and 
thermocompression cycles are needed to make a finished part. The process starts off with aligning the detector array on a 
custom vacuum plate designed to hold a large array while transmitting the force through the detector walls. This custom 
part is also designed to handle detector arrays with membranes10

2.4 Cold Testing 

. The readout quadrants are then hybridized one at a 
time to build up the mosaic. When all of the quadrants are in place, one more piece of silicon is glued to the stack. This 
solid piece ties all the quadrants together for rigidity. The FC 150 is used for this step to ensure alignment and control 
the epoxy gap, as well as to cure the epoxy. The gap between the quadrants after hybridization is equivalent to the width 
of the dicing saw that cuts the substrate after fabrication, which is about 200µm. 

After hybridization the parts are mounted and wire-bonded in a package for cold testing. We are able to wire-bond 
directly to the molybdenum nitride on the substrate. A successful circuit needs to prove superconducting with adequate 
critical current in order to be useful and considered successful. To get to the needed temperatures, a simple dewar was 
used that allowed for pumping on a liquid helium bath. The package was lowered directly into the liquid helium. A 
Linear Research bridge was used to measure the resistance of each channel connected, while temperature was monitored 
using a Lakeshore bridge. Data was recorded using Labview software. Using a 4-wire measurement configuration each 
channel was monitored to see that it went to the lowest reading of the bridge, which corresponded to a value of 0.01mΩ, 
this value was taken to indicate a superconducting circuit. 

3. RESULTS 
Electrically, we have proven a superconducting path from the under-bump-metal, to the indium bumps, to the landing-
pad-metal and back to the substrate via a completely new path. Figure 4 shows representative data for the metal systems 
comprising the circuit of a mosaic hybrid. The superconducting transition of the molybdenum nitride at 6.8 Kelvin is 
consistent with Mo2N11. Also shown in Figure 4 is the superconducting transition of the indium at 3.4 Kelvin, which is 
consistent with bulk indium12. The data shown in Figure 4 were taken at a measurement range of 2Ω and an excitation of 
2mV indicating a critical current of at least 1mA, sufficient for our PIPER project as well as future missions. This data 
indicates that we have successfully made a superconducting cold-weld between the indium and the LPM, as well as the 
indium-molybdenum nitride joint on the substrate. The plasma cleaning process on large-format-arrays produced from 
the mosaic build process have yielded a successful pixel rate of 91% of testable channels. The failure rate is confined to 
the corners of the array, which are thought to be due to non-uniform plasma over large areas. This limitation can easily 
be overcome with a more uniform reactive ion etching system. 

 
Figure 4. Left: A plot of resistance versus temperature that reveals the critical temperature for the transition from normal 
metal to superconductor for our molybdenum nitride film. The resistance below the Tc is not zero at this point, as the 
indium has not yet gone through its transition. Right: A plot of resistance versus temperature that reveals the critical 
temperature for the transition from normal metal to superconductor for our indium. The overall circuit is superconducting at 
this point as the resistance is pegged at the lowest possible reading of 0.01 mΩ. 



 
 

 
 

From a mechanical perspective we have successfully built arrays by the mosaic hybridization process. Figure 5 shows 
the build in various stages as well as a completed detector array with readout electronics. Our hybridization plan 
accurately built the array by aligning four readout chips on a single detector chip having a grid structure with walls only 
60 µm thick. The gap between substrate and detector is a useful metric to determine if a good bond has been made, as it 
is a good estimate of the final indium bump height and indicates how much the bumps were compressed. Also, when 
measured across an array it can indicate uniformity in compression or any issues related to the bowing of parts. In our 
tests, the final gap measurement for all four quadrants was on average 4.1µm +- 0.98µm, indicating an average 
compression of 5.4µm. 

 
Figure 5. The sequence above illustrates the mosaic build process. (a) is a sketch of the assembly process, showing how the 
FC150 arm picks and places mosaic quadrants of readout chips onto a single BUG array, oriented facedown, hybridizing 
with indium bump bonds between each component. Images (b) – (d) are photographs taken of parts on the FC150 vacuum 
chuck during the assembly process. These show the population of the BUG array with readout quadrants (smaller 
rectangles). Image (e) shows the final placement of a carrier substrate on top of the readout quadrants, which provides 
strength to hold the assembly together. At the lower left is a photograph of the front-side of the stack showing the readout 
quads (with edge wire-bond pads) and the singular detector grid on top. The cross in the grid is solid silicon, one pixel 
width, used to provide area for indium bumps to hold the quadrants together. 



 
 

 
 

4. SUMMARY 
We report a hybridization scheme that will enable large format detectors which utilizes an effective plasma cleaning 
process for the hybridized parts. The plasma cleaning process has been shown to consistently prepare the indium surface 
for hybridization. The plasma process also passivates the surface in a way that allows for the indium to sit in air during 
the hybridization loading and alignment steps, which can take considerable time. This process yielded superconducting 
circuits with high critical currents, of at least 1mA. 

With this mosaic hybridization technology, current detectors can be readily scaled up with only a few design changes. 
Our demonstration showed that we can tile current sized arrays to build even larger mosaic arrays. We built a mosaic 
detector and readout quadrants fabricated on 100mm diameter wafers, however this technology is directly scalable to 
150mm wafers. In this scenario, the readout quadrants could be the size of the single MUX used for PIPER, while the 
detector could be produced on a 150mm wafer. The hybridization scheme along with the plasma cleaning is compatible 
with the needed processes that are required to fabricate a working array with our current background limited detector 
architecture. With this new technology it is possible to build arrays containing quadrants consisting of 10,000 pixels on a 
0.5mm pitch, totaling 40,000 pixels, numbers not currently available for highly sensitive arrays operating at long 
wavelengths. 
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